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1.The Real Line (R) with the Standard Topology: 

 Topology:  

The standard topology on the set of real numbers is generated by open intervals 

(a,b), where a and b are real numbers. This means that any open set in this 

topology can be expressed as a union of such open intervals. 

Example: The interval (−1,1) is an open set. The union of (0,0.5) and (0.7,1.2) 

is also an open set. Concepts like continuity of functions you learned in 

calculus are defined with respect to this topology. 

2. Euclidean Space (R
n
) with the Standard Topology:  

 Topology: This generalizes the real line to higher dimensions. In R
n
, the 

standard topology is generated by open balls (or open n-dimensional boxes). 

An open ball centered at a point x with radius r>0 is the set of all points y such 

that the Euclidean distance between x and y is less than r. 

 Example: In R
2
 (the plane), an open ball is an open disk. The set 

{(x,y)∈R
2∣x2

+y
2
<1} is an open set in the standard topology on R

2
. This 

topology is fundamental to multivariable calculus and analysis. 

 



 3. Metric Spaces and the Metric Topology: 

 Topology: If you have a metric d(x,y) defined on a set X (a function that measures the 

"distance" between any two points and satisfies certain properties), you can define a 

topology on X called the metric topology. The open sets in this topology are unions of open 

balls B(x,r)={y∈X∣d(x,y)<r}, where x∈X and r>0. 

 Example: The real line R with the absolute value as the metric (d(x,y)=∣x−y∣) induces the 

standard topology. Similarly, Euclidean space R
n
 with the Euclidean distance metric induces 

the standard topology on R
n
. Many important topological spaces arise from metrics. 

4. Subspace Topology: 

 Topology: If Y is a subset of a topological space X with topology T, the subspace topology 

on Y consists of all intersections of open sets in T with Y. That is, a subset U⊆Y is open in 

the subspace topology if and only if there exists an open set V∈T such that U=V∩Y. 

 Example: Consider the unit circle S1={(x,y)∈R
2∣x2

+y
2
=1} as a subspace of R

2
 with the 

standard topology. An open set in the subspace topology on S1 is the intersection of an open 

disk in R
2
 with the circle. For instance, the part of the circle lying in the open half-plane x>0 

is an open set in the subspace topology. 

 

 



5. Product Topology: 

 Topology: If X and Y are topological spaces with topologies TX and TY respectively, the 

product topology on the Cartesian product X×Y is the topology generated by the basis of sets 

of the form U×V, where U∈TX and V∈TY. This can be generalized to the product of any 

collection of topological spaces. 

 Example: The standard topology on R
2
 is the product topology of R×R, where R has the 

standard topology. An open rectangle (a,b)×(c,d) is a basic open set in this product topology. 

6. Quotient Topology: 

 Topology: If X is a topological space and p:X→Y is a surjective map, the quotient topology on 

Y is the finest topology on Y such that the map p is continuous. A subset V⊆Y is open in the 

quotient topology if and only if its preimage p−1(V) is open in X. 

 Example: Consider the closed interval [0,1] with the subspace topology from R. If we identify 

the endpoints 0 and 1, we can define a surjective map p:[0,1]→S1 (the unit circle). The 

quotient topology on S1 induced by this map makes it a familiar topological space. 

 



Basis 

Definition: 

Let (X,T) be a topological space. A collection B⊆T of open subsets of X is called a basis for the 

topology T if every open set U∈T can be expressed as the union of some subfamily of B.    

In simpler terms, you can build any open set in the topology by taking appropriate unions of the sets 

in the basis. The sets in the basis are often called basic open sets. 

A collection B of subsets of a set X is a basis for some topology on X if and only if it satisfies the 

following two conditions: 

1. Coverage: The union of all the sets in B must be equal to X.
 1 

That is, every point in X must 

belong to at least one set in B: 

2. Intersection Property: For every point x∈X that lies in the intersection of two basic open 

sets B1,B2∈B, there must exist another basic open set B3∈B such that x∈B3 and B3⊆B1∩B2.    

If a collection B satisfies these two conditions, then the topology T generated by B consists of all 

possible unions of elements from B. 

 



Connected space 

Definition: 

A topological space (X,T) is said to be connected if it cannot be expressed as the union of 

two non-empty, disjoint open subsets. 

In other words, if X=U∪V, where U and V are open in T, and U∩V=∅, then either U=∅ or 

V=∅ (or both, if X itself is empty). 

A space which is not connected is called as disconnected space. 

Examples of Connected Spaces: 

 The Real Line (R) with the Standard Topology: It cannot be split into two non-

empty disjoint open intervals (or unions of them). 

 Any Interval in R (open, closed, or half-open): For example, (0,1), [a,b], (−∞,a], 

etc., are all connected with the subspace topology inherited from R.    

 Euclidean Space (Rn) with the Standard Topology: For any n≥1, Rn is 

connected. 

 



 Continuous Images of Connected Spaces: If f:X→Y is a continuous function and X is 

connected, then the image f(X) is also connected (with the subspace topology inherited from 

Y). This is a powerful way to show that many spaces are connected. For example, the circle 

S1 is the continuous image of the connected interval [0,1] under the map 

t↦(cos(2πt),sin(2πt)), so S1 is connected.    

 The Union of Connected Sets with a Non-Empty Intersection: If {Aα}α∈I is a collection 

of connected subsets of a topological space X such that ⋂α∈IAα =∅, then their union 

⋃α∈IAα is also connected. 

Examples of Disconnected Spaces: 

 The union of two disjoint open intervals in R: For example, (0,1)∪(2,3) is disconnected 

because (0,1) and (2,3) are non-empty, disjoint, and open in the subspace topology. 

 A discrete space with more than one point: In a discrete space, every subset is open (and 

closed). If the space has at least two points, say {x,y}, then {x} and {y} are non-empty, 

disjoint open sets whose union is the entire space. 

 The rational numbers (Q) with the subspace topology from R: For any two rationals 

p<q, we can find an irrational number r such that p<r<q. Then Q=(Q∩(−∞,r))∪(Q∩(r,∞)), 

which are non-empty, disjoint, and open in the subspace topology on Q. 

 

 



Connected Components: 

Every topological space can be uniquely decomposed into maximal connected subspaces called its 

connected components.    

 The connected component of a point x in a space X is the union of all connected subsets of X 

that contain x. This union is itself connected and is the largest connected subset containing x.    

 The connected components of a topological space form a partition of the space: they are 

disjoint, non-empty, and their union is the entire space.    

 Connected components are always closed sets.    

 

 

 



Definition: 

A topological space (X,T) is said to be compact if every open cover of X has a finite subcover. 

 Open Cover: An open cover of a space X is a collection of open sets {Uα}α∈I (where I is an 

index set, possibly infinite) such that their union contains X: X⊆α∈I⋃Uα    

 Finite Subcover: A finite subcover is a finite subcollection {Uα1,Uα2,…,Uαn} of the original 

open cover such that their union still contains X: X⊆i=1⋃nUαi 

So, a space is compact if, whenever you cover it with any collection of open sets, you can always find 

a finite number of those open sets that still cover the entire space. 

 



Key Properties of Compact Spaces:  

 Closed Subsets of Compact Spaces are Compact: If Y is a closed subset of a compact 

space X, then Y (with the subspace topology) is also compact.    

 Compact Subspaces of Hausdorff Spaces are Closed: If Y is a compact subspace of a 

Hausdorff space X, then Y is a closed subset of X. (A Hausdorff space is one where any two 

distinct points have disjoint open neighborhoods.)    

 Continuous Images of Compact Spaces are Compact: If f:X→Y is a continuous function 

and X is a compact space, then the image f(X) (with the subspace topology inherited from Y) 

is also compact. This is a very powerful property for proving compactness of new spaces.    

 Compactness in Metric Spaces is Equivalent to Sequential Compactness: For a metric 

space, compactness is equivalent to the property that every sequence in the space has a 

subsequence that converges to a point within the space. It is also equivalent to being complete 

and totally bounded.    

 The Product of Finitely Many Compact Spaces is Compact (Tychonoff's Theorem 

extends this to arbitrary products): If X1,X2,…,Xn are compact spaces, then their product 

X1×X2×…×Xn (with the product topology) is also compact.    

 



Examples of Compact Spaces: 

 Any Finite Topological Space: Since any cover will be finite, it automatically has a 

finite subcover (itself). 

 A Set with the Cofinite Topology: In this topology, a subset is open if and only if it is 

empty or its complement is finite. Any open cover of such a space will have at least one 

non-empty open set U. The complement of U is finite, so you can pick one open set from 

the cover to contain each of these finitely many points, resulting in a finite subcover.    

 The Closed Unit Interval [0,1] in R (with the standard topology): This is a 

fundamental example, often proven using the Heine-Borel Theorem.    

 Any Closed and Bounded Interval [a,b] in R. 

 Closed and Bounded Subsets of Rn (with the standard topology) - (Heine-Borel 

Theorem): For example, closed disks, closed balls, closed rectangles, etc. 

 The Unit Circle S1 and the n-Sphere Sn (with the subspace topology from Rn+1): 

These are continuous images of compact intervals. 

 The Cantor Set: A fascinating example that is compact, totally disconnected, and 

perfect. 

 



Examples of Non-Compact Spaces: 

 The Open Interval (0,1) in R: The open cover {(1/n,1)∣n∈N,n>1} has no finite 

subcover. 

 The Real Line R itself: The open cover {(n−1,n+1)∣n∈Z} has no finite subcover. 

 Any Infinite Set with the Discrete Topology: The open cover consisting of all singleton 

sets {{x}}x∈X has no finite subcover. 

 The Rational Numbers Q (with the subspace topology from R): Even though it's 

bounded within a compact interval, it's not closed in R, and it's not compact. 
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